

FR

TI60-0001

INFORMATIONS TECHNIQUES MOTEURS SYNCHRONES 0,35 - 5,50 kW

Sommaire

Introduction	2 - 5
Options Moteurs synchrones	6 - 10
Moteurs freins	12 - 14
Instructions pour l'élaboration du projet	15 - 22
Données moteurs synchrones	24 - 32
Dessins cotés des moteurs synchrones	34 - 43

Groupe NORD DRIVESYSTEMS

Motoréducteurs

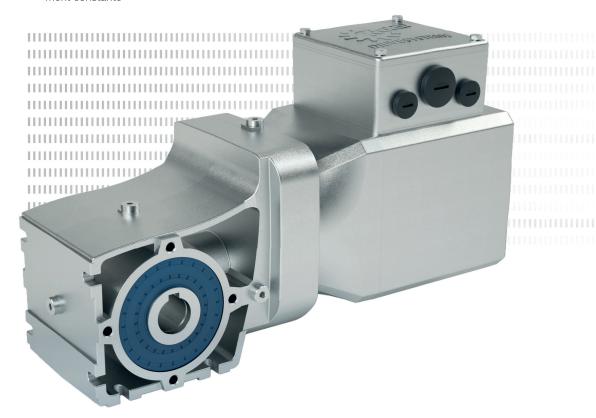
- ▶ Siège social et centre de recherche et développement à Bargteheide près de Hambourg.
- ▶ Solutions d'entraînement innovantes pour plus de 100 secteurs industriels.
- ▶ 7 sites de production à la pointe du progrès technologique fabriquent des réducteurs, des moteurs et de l'électronique d'entraînement pour des systèmes d'entraînement complets élaborés de A à Z par nos soins.
- NORD a ses 48 filiales propres dans 36 pays et des distributeurs dans plus de 50 pays. Ceux-ci offrent un approvisionnement sur place, des centres de montage, une assistance technique et un service aprèsvente.
- ▶ Plus de 4 000 collaborateurs à l'échelle mondiale apportent des solutions spécifiques aux clients.

Moteurs IE4 haute efficacité IE5

La norme IEC 60034-30-2:2016/DIN VDE 0530-30-2:2019-02 définit les exigences de rendement imposées aux moteurs électriques par des indications de rendements. Les moteurs synchrones de NORD DRIVESYSTEMS basés sur la technologie à aimant permanent garantissent des rendements élevés. Même à basse vitesse, ces systèmes atteignent des couples élevés et un rendement tout à fait exceptionnel (IE4 et supérieur). Les moteurs pour des installations optimisées en énergie sont exclusivement conçus pour le fonctionnement avec variateur de fréquence.

NORD livre des moteurs synchrones avec des puissances comprises entre 0,35 et 5,50 kW.

NOUVEAU NEU



La nouvelle génération de moteurs IE5+ élargit la série actuelle de moteurs synchrones dans la plage de puissances inférieure.

La dernière génération de moteurs synchrones à aimant permanent d'une grande efficacité énergétique réduit encore nettement les pertes par rapport à la série IE4 actuelle.

Le moteur atteint son rendement élevé, situé en partie nettement au-dessus de la classe d'efficacité IE5, sur une large plage de couples et est donc optimal pour un fonctionnement économique en charge partielle. Le moteur IE5+compact offre une capacité de puissance élevée malgré un faible encombrement :

- Coûts de fonctionnement réduits grâce aux moteurs synchrones à haut rendement dotés de la technologie à aimant permanent
- ▶ Combinaison simple et très flexible par la compatibilité complète avec les modules NORD
- Commande simplifiée des applications grâce une vitesse du moteur quasiment constante

La nouvelle génération de moteurs IE5+ permettant de réduire les coûts d'exploitation est particulièrement adaptée aux applications en milieu humide :

- efficacité de service maximale
- coût total de possession réduit (TCO) et retour rapide sur investissement (ROI)
- réduction des variantes possible par un couple constant sur une large plage de vitesses
- particulièrement facile à nettoyer avec une résistance à la corrosion élevée, grâce à une conception moteur lisse et sans ventilateur
- solution intégrale idéalement harmonisée dans le module NORD avec le variateur, le réducteur et le moteur
- design compact et hygiénique pour une très grande diversité d'applications

Fonctionnalités:

- moteur synchrone à aimant permanent (PMSM) de dernière génération
- plage de puissance de 0,35 à 1,1 kW dans une seule taille
- fixation à bride B14 IEC, fixation à bride B5 IEC, fixation à bride NEMA C-face, montage direct sur tous les réducteurs NORD
- couple nominal de 1,6 à 4,8 Nm dans une seule taille
- plage de vitesses de 0 à 2 100 tr/min
- codeur intégré au moteur et frein mécanique intégré en option

Moteur synchrone NORD IE5+

Réducteur à couple conique SK 92072.1 Moteur synchrone NORD-IE5+

Plus d'informations ici :

Flyer S9012

Moteurs asynchrones M7000

Guide pour application - PMSM Optimisation des entraînements

AG0101

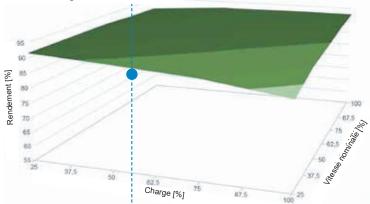
NORD 1E4/1E5 DONNÉES MOTEUR

Hauteur d'axe : 71, 80, 90, 100

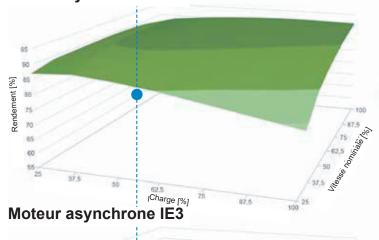
T=2 100 tr/min en couplage étoile, 3 000 tr/min en couplage triangle N=Non ventilated

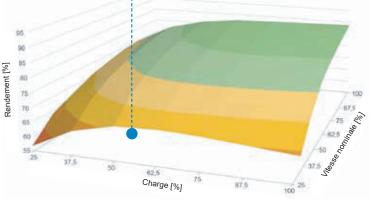
Longueur de paquet : le code 1..9 dépend de la longueur et de la hauteur d'axe

Nombre de pôles


T 1 /4...8

Taille	M _N [Nm]	P _N [kW]	n _N	[A]		J [kgm ²]	m [kg]	M _{max} [Nm]	kŢ [Nm/A]	k _E [mV/rpm]
71N1/8	1,60	0,35	2 100	0,76	89,1	0,00019	4,90	4,80	2,11	143
71N2/8	3,20	0,70	2 100	1,45	92,5	0,00038	6,00	9,60	2,21	144
71N3/8	4,80	1,10	2 100	2,14	93,6	0,00057	7,00	14,4	2,24	144
80T1/4	5,00	1,10	2 100	2,07	90,5	0.0011	0.00	4.4.4	2,50	154
80T1/4 Δ	4,80	1,50	3 000	3,44	90,4	0,0011	8,00	14,4	1,40	89
80T1/4 HM	3,41	0,75	2 100	1,46	90,5	0,0011	7,80	13,5	2,30	154
90T1/4	6,80	1,50	2 100	2,82	89,9	0.0010	10.0	01.0	2,40	156
90T1/4 Δ	7,00	2,20	3 000	5,09	89,6	0,0019	10,0	21,0	1,40	90
90T3/4	10,0	2,20	2 100	4,13	90,5	0.0004	10.0	00.0	2,40	158
90Τ3/4 Δ	9,50	3,00	3 000	6,84	92,3	0,0024	12,0	29,0	1,40	91
90T3/4 HM	5,00	1,10	2 100	2,08	92,7	0,0024	11,6	28,3	2,40	156
100T2/4	13,6	3,00	2 100	5,40	91,4	0.0040	40.0	40.0	2,60	161
100T2/4 Δ	12,7	4,00	3 000	8,90	92,1	0,0046	18,0	42,0	1,50	93
100T5/4	18,2	4,00	2 100	7,10	92,1	0.0000	01.0	F7.0	2,60	165
100T5/4 Δ	17,5	5,50	3 000	11,9	92,2	0,0060	21,0	57,0	1,50	95
100T5/4 HM	10,0	2,20	2 100	4,16	91,0	0,0060	21,0	53,5	2,40	165




COMPARATIF DES RENDEMENTS MOTEUR SYNCHRONE/MOTEUR ASYNCHRONE

Moteur synchrone IE4

Le nouveau moteur synchrone IE+ se distingue par son rendement très important.

De grandes économies d'énergie sont possibles, en particulier dans la plage de charge partielle et de vitesse partielle, en comparaison avec les moteurs asynchrones. *Ceci réduit les coûts totaux pour le client.

*Exemple de rendement : Charge 50 % / vitesse 37,5 %

NORD IE4 OPTIONS*

Options de moteur disponibles pour la série de moteurs IE4 PMSM 1,10 - 5,50 kW

Sigles		Signification
BRE +		Frein / couple de freinage + Option supp.
	RG *	Protection anti-corrosion
	SR *	Protection anti-poussière et anti-corrosion
	FHL *	Déblocage manuel encliquetable du frein
	HL	Déblocage manuel du frein
	MIK	Micro-contact
NRB1 / 2		Frein avec réduction de bruit
ERD		Borne de terre externe
TF		Sondes CTP
TW		Contrôleur de température, contact libre de potentiel
SH		Résistance de préchauffage
WE +		2e Bout d'arbre
	HR	Volant
RD		Tôle parapluie
RDT		Tôle parapluie pour ambiance textile
RDD		Double capot ventilateur
OL		Sans ventilateur
OL/H		Sans ventilateur ni capot
KB		Trous d'évacuation d'évacuation des condensats
MS		Connecteur moteur
EKK		Boîte à bornes monobloc
KKV		Boîte à bornes moulée (étanchanchéité résine entre stator et bornier)
FEU		Isolation contre ambiance humide
TR0		Bobinage tropicalisé
F		Ventilation forcée
RLS		Antidévireur
IG1	(IG11, 12)	Codeur incrémental 1024 points
IG2	(IG21, 22)	Codeur incrémental 2048 points
IG4	(IG41, 42)	Codeur incrémental 4096 points
MG		Codeur incrémental magnétique
IG.P		Codeur incrémental avec connecteur
IG.K		Codeur incrémental avec boîte à bornes
Codeur absolu		Codeur absolu

^{*} De plus amples informations sont disponibles dans le catalogue de moteurs M7000

Options de moteur disponibles pour la série de moteurs IE5+ PMSM 0,35 - 1,1 kW

Sigles		Description
TF		Sondes CTP
IP69K		Indice de protection IP69K
BRE		frein d'arrêt mécanique
MS		MS31, MS32, MS21, MSR, MSR VA
IG6	(IG6, IG61, IG62)	Codeur incrémental 2048 points
IGxxP	(IG62P5, IG61P8, IG62P5)	Codeur incrémental avec fiche 5 ou 8 pôles

Protection thermique du moteur

Un choix judicieux du moteur le protège de la surchauffe selon l'application ou les conditions ambiantes. Les facteurs pouvant entraîner une surchauffe du moteur sont notamment

- Une surcharge
- Des températures ambiantes élevées
- Une alimentation limitée en air de refroidissement
- ▶ Un régime de moteur réduit en raison du fonctionnement du variateur.

Les moteurs NORD IE5+ sont équipés d'une protection thermique.

TF = Capteur thermique à thermistance (PTC-thermistor)

Ils servent directement à la surveillance de la température des bobinages en cas d'utilisation maximale de la puissance du moteur.

Trois (un par ligne) capteurs thermiques TF raccordés en série sont montés sur les points les plus chauds des bobinages. Leurs connexions sont ramenées sur 2 bornes dans la boîte à bornes.

Le capteur thermique décuple brutalement sa valeur de résistance lorsque sa température nominale de service est atteinte (NAT).

Température de déclenchement : 135° C Tension max. Bornes 30 V TP1 + TP2

La sonde de température ne remplit sa fonction de protection que si elle est raccordée à un dispositif de déclenchement!

Un dispositif de déclenchement analyse l'augmentation de la résistance et coupe l'entraînement.

NORD IE5 OPTIONS

Codeur

Codeur incrémental (IG)

De nombreuses applications à entraînements requièrent fréquemment une réduction de la vitesse de rotation. Pour cela, des codeurs incrémentaux sont en principe utilisés. En tant que capteurs de valeurs de mesure, ceux-ci convertissent le mouvement de rotation en signaux électriques.

Ces signaux sont lus et traités par des variateurs de fréquence ou autres dispositifs de régulation. Le codeur incrémental du moteur IE5+ fonctionne selon un principe magnétique. Le codeur se compose de deux éléments, la roue magnétique, qui est située sur l'arbre du moteur, et la carte de capteurs. Le système électronique intégré convertit les signaux de mesure en un signal rectangulaire numérisé selon la logique TTL ou HTL.

En combinaison avec les variateurs de fréquence NORD, les codeurs incrémentaux permettent de répondre aux exigences suivantes :

- Régulation du régime avec une large plage de réglage
- ▶ Haute précision de vitesse, indépendamment de la charge
- Régulations du synchronisme
- Régulations de positionnement
- Moments d'arrêt
- Capacités de surcharge élevées

Caractéristiques techniques	Type / nombre de points					
Caracteristiques techniques	odracteristiques techniques					
Interface		RS 485	TTL	HTL		
Tension de service +U _B	[V]	10 30	10 30			
Vitesse de fonctionnement max.	[tr/min]	4000				
Température ambiante	[C]	-25 +90				
Type de protection		Correspond à la classe de protection de moteur				
Consommation de courant max.	[mA]	400	400	400		

Montage des codeurs incrémentaux

Le codeur incrémental est entièrement intégré dans le boîtier du moteur et est compatible avec toutes les variantes du moteur IE5+. L'installation intégrée dans le moteur protège entièrement le système de codage des influences extérieures.

Le branchement électrique se fait par une fiche à bride dans la boîte à bornes du moteur. Selon la variante du codeur, des connecteurs à 5 ou 8 connexions sont disponibles. Le câble de signal approprié peut être fourni sur demande.

Codeur incrémental avec fiche à 5 pôles (IGxxP5)

PIN	Signał	Configuration des connexions du codeur
1	+V	
2	В	
3	OV	
4	А	• //
5	0	3

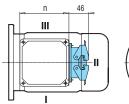
Codeur incrémental avec fiche à 8 pôles (IGxxP8)

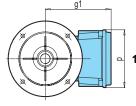
PIN	Signał	Configuration des connexions du codeur
1	OV	
2	+ U _B	
3	А	2
4	A\	3 • 8 • 7
5	В	4 • •6
6	B\	5
7	0	
8	0\	

Le choix du codeur en fonction de la logique de sortie dépend de l'interface de l'électronique d'exploitation. Les conditions suivantes s'appliquent aux variateurs de fréquence NORDAC :

Série de variateurs de fréquence NORDAC	Logique des codeurs incrémentaux
SK500P, SK510P	HTL mit 10 – 30V Versorgung
SK530P, SK550P	TTL mit 10 – 30V Versorgung
SK520E, SK530E, SK535E, SK540E, SK545E	TTL mit 10 – 30V Versorgung
SK200E, SK205E, SK210E, SK215E, SK220E, SK225E, SK230E, SK235E	HTL avec alimentation de 10 – 30 V
NORDAC LINK	HTL avec alimentation de 10 – 30 V

De plus amples détails sont disponibles dans les modes d'emploi des variateurs de fréquence, par ex. BU 0500E.


Un module électronique externe pour la conversion des signaux HTL en TTL (par ex. connexion du codeur à 530P avec de très longs câbles) peut être fourni par NORD en tant que module.


NORD IE5 OPTIONS

Connecteur enfichable moteur (MS)

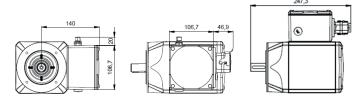
Exécution normale

Boîte à bornes en 1, connecteur en II (sur le capot ventilateur), connecteur en I + III possible

Les moteurs IE5+ peuvent également être fournis sur demande avec des connecteurs de moteur.

Les connecteurs de moteur suivants sont disponibles en version standard

- ▶ Connecteur de moteur MS21 (HAN Q8)
- Connecteur moteur MS31 / MS32 (HAN 10E)
- Connecteur moteur MSR / MSR VA


Connecteur de moteur MS21

- Données techniques :

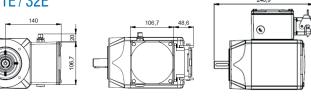
Fiche: HAN Q8 Nombre de contacts: 10 pôles Intensité: 16 A max.

Tension: 500 V max. (600 V max. conf. à UL/CSA)

Bornier à ressort

Connecteur de moteur MS31 / 32 / 31E / 32E

- Données techniques :


Fiche: HAN 10 ES/

Han ESS Nombre de contacts : 10 pôles

Intensité: 16 A max.

Tension: 500 V max. (600 V max. conf. à UL/CSA)

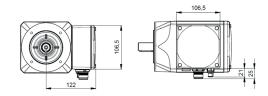
Bornier à ressort

avec protection CEM

Les connecteurs de moteur MS31E et MS32E sont chacun adaptés aux applications à compatibilité électromagnétique accrue (protection CEM).

Connecteur de moteur MSR / MSR VA

- Données techniques :


Fiche: Filetage du moteur M20 x 1,5

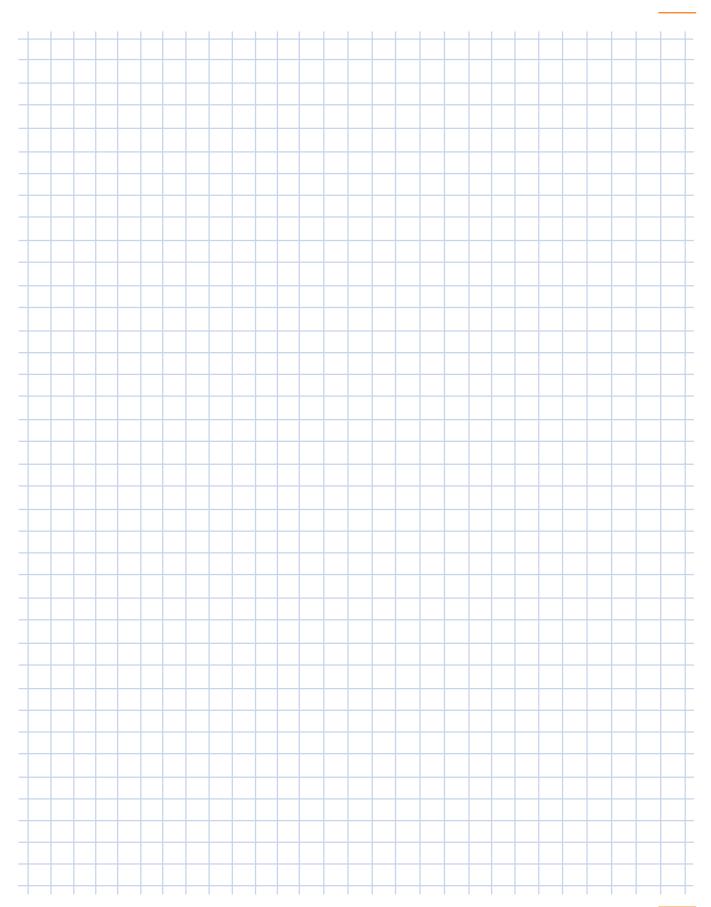
avec filetage de raccordement

M23 x 1,0

Nombre de contacts : 8 pôles (4 + 3 + PE)

Intensité: 28 A max. Tension: 600 V max.

Version VA


Disponible en option en acier inoxydable (VA).

Les connecteurs enfichables du moteur sont fournis sans connecteur femelle et un cache de protection permet de le protéger des salissures.

Les connecteurs correspondants sont également disponibles sur demande.

NORD IE4/IE5 **MOTEURS FREIN**

Freins - Affectation standard pour les moteurs IE4/IE5

			BRE	- 5	BR	E 10	BRE 20		BRE 40		BRE 60				
	Moteu	r	M _N [Nm]	P _N [kW]	n _N [tr/min]	M _B [Nm]	f _B								
	71N1/8	1)	1,60	0,35	2 100	2,5	1,5								
IE5	71N2/8	1)	3,20	0,70	2 100	5,0	1,5								
	71N3/8	1)	4,80	1,10	2 100	5,0	1,0								
	80T1/4		5,00	1,10	2 100	5,0	1,0	10	2,0	20 *	4,0				
	80T1/4	Δ	4,80	1,50	3 000	5,0	1,0	10	2,1	20 *	4,2				
	90T1/4		6,80	1,50	2 100			10	1,5	20	2,9	40 *	5,9		
-	90T1/4	Δ	7,00	2,20	3 000			10	1,4	20	2,9	40 *	5,7		
<u>E</u> 4	90T3/4		10,0	2,20	2 100			10	1,0	20	2,0	40 *	4,0		
	90T3/4	Δ	9,60	3,00	3 000			10	1,0	20	2,1	40 *	4,2		
	100T2/4		13,6	3,00	2 100					20	1,5	40	2,9	60 *1)	4,4
	100T2/4	Δ	12,7	4,00	3 000					20	1,6	40	3,1	60 *1)	4,7
	100T5/4		18,2	4,00	2 100					20	1,1	40	2,2	60 *1)	3,3
	100T5/4	Δ	17,5	5,50	3 000					20	1,1	40	2,3	60 *1)	3,4
Poi	ds [kg]					2,	0	3,0)	5,5		7,0		1	0
J [10 ⁻³ kgm ²]					0,0	015	0,0	045	0,1	53	0,4	5	0,8	36

Couples de freinage en caractères gras : Version standard

- Frein IP 66 impossible
- Ventilation manuelle impossible

de freinage

↑ Déterminer le couple Le choix de l'une des combinaisons standard moteur – frein proposées dans le tableau ci-dessus doit être vérifié avec soin lors de l'étude du projet! Le couple de freinage doit impérativement correspondre aux exigences relatives à l'application.

> Le dimensionnement des entraînements doit intégrer aussi bien les besoins en couple de l'application que le couple délivré par le moteur. Si nécessaire, le couple de freinage doit être nettement réduit, afin de ne pas provoquer une surcharge du réducteur compte tenu des masses importantes entraînées.

Frein d'arrêt • Frein de travail • Frein d'arrêt d'urgence

Une différenciation entre "frein d'arrêt", "frein de travail" et "frein d'arrêt d'urgence" intervient en fonction de la nature de l'application.

Frein d'arrêt mécanique

Un frein d'arrêt doit maintenir à l'arrêt une chaîne cinématique déjà arrêtée ou arrêter une installation pratiquement à l'arrêt.

Frein de travail

Dès qu'un frein doit fournir un travail de frottement considérable, il fonctionne en tant que frein de travail. Le travail de frottement correspondant et la fréquence de commutation doivent être déterminés et pris en compte lors du choix du frein.

Frein d'arrêt d'urgence

Un frein d'arrêt d'urgence s'emploie si de très fortes masses doivent être freinées, avec par conséquent des énergies importantes sollicitant le frein.

Dans ce cas, le choix du frein se fait en fonction du travail de frottement maximum admissible par freinage.

NORD IE4/IE5 MOTEURS FREIN

Exemples d'application pour le frein d'arrêt et le frein de travail

L'accélération et la temporisation de l'application sont commandées par un variateur de fréquence et ce n'est que lorsque l'application s'arrête que le frein à ressort mécanique s'enclenche.

Frein d'arrêt mécanique

Le frein est ainsi seulement utilisé pour « le maintient à l'arrêt » de l'application (position de stationnement) et n'exerce aucun frottement et par conséquent, un traitement des surfaces de frottement n'est pas nécessaire.

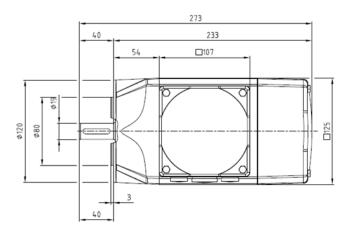
Ce n'est qu'en cas d'arrêt d'urgence ou de panne de courant que le frottement est appliqué.

Le motoréducteur fonctionne directement par le biais de l'alimentation en tension locale. Pour ralentir l'application, le frein à ressort mécanique doit appliquer un couple de freinage et exerce ainsi un frottement. Frein de travail

Le frottement continu induit un échauffement. Il convient de veiller à ce que la chaleur de frottement produite soit évacuée efficacement.

Le frein mécanique est également utilisé pour "l'arrêt" de l'application (position de stationnement).

NORD IE5 MOTEURS FREIN


Tensions d'alimentation des freins

Les freins peuvent être livrés avec les tensions de bobines suivantes : **24VDC**, **180VDC**, **205VDC**

Caractéristique	Valeur	Remarque
Vitesse maximale	6000 rpm	
Travail de frottement par arrêt d'urgence	3000 J	puis régénération par simple freinage
Fréquence de commutation à 1500 J	100 commutations/ h	Le travail de friction maximal est alors réduit
Type de protection	IP20	Le frein est entièrement intégré au moteur
Contrôle via le PWM	DIN3	

Des informations complémentaires sur le frein sont disponibles sur demande.

Plan de cotes IEC B14 IE5+ Moteur avec frein

Redresseur SK EBGR-1

Activation du frein

Un convertisseur avec un redresseur correspondant est nécessaire pour commander les

freins.

Un redresseur intégré dans la boîte à bornes du moteur n'est pas disponible pour les moteurs IE5+.

Une autre solution consiste à utiliser un redresseur dans l'armoire de commande. NORD propose un redresseur avec le **SK EBGR-1**.

De plus amples informations techniques sur le rectificateur sont disponibles sur le site $\underline{\text{le}}$ site NORD.

Guide d'élaboration de projet et de mise en service des moteurs synchrones NORD (PMSM) avec les variateurs de fréquence NORD

Généralités

Les moteurs des classes d'efficacité IE4 et IE5+ fonctionnent sur le principe des moteurs synchrones et sont conçus pour une utilisation sur le variateur de fréquence. En raison de leur haut rendement, ils offrent les avantages d'une économie d'énergie. Du point de vue du rendement, il faut toutefois toujours considérer le système dans son ensemble.

- ▶ Les variateurs de fréquence ont un rendement > 95 %. En optimisant les processus, l'utilisation du variateur peut apporter des avantages énergétiques suffisants pour compenser largement la perte de puissance de l'appareil (p.ex. régulation de vitesse des pompes plutôt que la régulation de l'ouverture des vannes).
- ▶ De même, lors de la sélection des réducteurs, outre le facteur de service de base (f_B) il faut également prendre en compte la combinaison moteur/réducteur, en particulier en cas de combinaison avec des moteurs synchrones à haut rendement.
- ▶ Lors du dimensionnement et de la sélection de l'entraînement, il convient de vérifier les exigences de fonctionnement dans la plage de surcharge en particulier dans le cas des moteurs non ventilés (TENV). NORD apporte son aide dans le processus de planification des projets pour les applications critiques.

Moteurs synchrones NORD

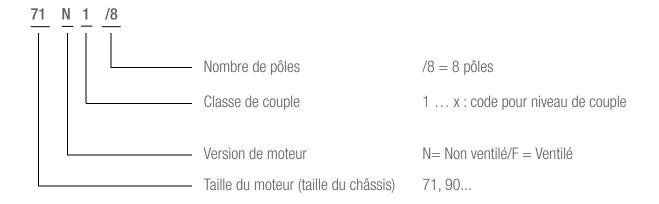
NORD propose des moteurs dans les classes d'efficacité IE4 et IE5+ actuellement dans la plage de puissance 0,35 kW - 5,5 kW (taille 71 - 100).

Les moteurs sont autoventilés ou non ventilés, et disponibles avec toutes les options moteur et combinaisons de réducteur connues. Les moteurs synchrones NORD sont dotés d'aimants permanents dans le rotor. Ceux-ci sont insérés dans des poches (appelées IPMSM : Integrated Permament Magnetic Synchron Motor) et nécessitent donc une faible utilisation de matériau aimanté (coût) comparé au SPMSM (Surface Permanent Magnetic Synchron Motor).

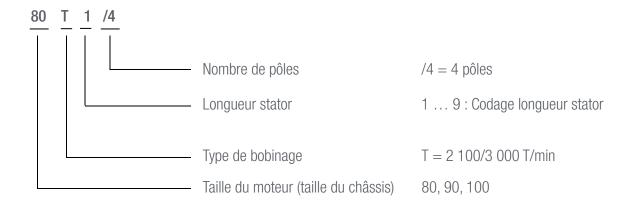
Un moteur synchrone ne peut pas démarrer ou fonctionner sur le secteur, mais uniquement sur le variateur de fréquence. Tous les variateurs de fréquence NORD peuvent faire fonctionner les moteurs synchrones NORD.

Le fonctionnement des moteurs synchrones NORD avec des variateurs d'autres fabricants est possible. Certains appareils de la concurrence ont été testés avec succès avec nos moteurs. La responsabilité de la mise en service réussie incombe au client. De même, la performance du moteur et l'atteinte du niveau de rendement correspondants à la classification IE4, dépendent du variateur, de son fonctionnement et de ses réglages.

Les moteurs synchrones d'autres constructeurs peuvent théoriquement fonctionner sur le variateur NORD, mais cette possibilité doit être vérifiée en amont, un moteur test devra évent. être réglé à l'usine principale (consultation impérative). NORD a déjà mis en service des moteurs tiers avec succès sur des variateurs NORD.


Les PMSM NORD ne sont pas des servomoteurs.

En tant que moteurs synchrones, ils ne présentent pas de glissement en fonction de la charge. Les moteurs NORD sont conçus pour diverses vitesses nominales :


- 1. 2 100 tr/min à 140 Hz, 400 V étoile (vaut pour la série de moteurs PMSM avec classe d'efficacité IE5+)
- 2. 2100 t/min à 70 Hz, 400 V étoile et 230 V triangle
- 3. 3000 t/min à 100 Hz, 400 V triangle
 Pour cela, le moteur est branché en triangle et entraîné théoriquement à 70 Hz x 1,71 = 121 Hz (contre courbe caractéristique de 87 Hz avec les moteurs 50 Hz). Comme le fonctionnement à 121 Hz est très bruyant (ventilateur) et l'affectation des variateurs compliquée, le point type 100 Hz, 400 V triangle est prévu. Il n'est pas disponible pour tous les moteurs synchrones NORD.

En plus du point de fonctionnement choisi, la plaque signalétique du moteur indique également la résistance du stator de moteur RS, les inductances de fuite du stator Ld et Lq, ainsi que la valeur de la tension d'induction (UEMK). Ces indications sont nécessaires à la programmation du variateur.

Code de type moteur synchrone IE5+ à l'exemple d'un 71N1/8

Code de type moteur synchrone IE4 à l'exemple d'un 80T1/4 remarque nomenclature IE5

Affectation moteurs/variateurs

Les affectations suivantes des moteurs aux variateurs de fréquence correspondants s'appliquent en cas de fonctionnement à la vitesse nominale. Les surcharges nécessitent une étude du projet ou un ajustement de l'affectation des variateurs.

Taille	M _N	P _N	n _N	I	η	J	М	M _{max}	k _T	k _E	Affectation VF
	[Nm]	[kW]	[rpm]	[A]		[kgm²]	[kg]	[Nm]	[Nm/A]	[mV/rpm]	
71 N1/8	1,6	0,35	2100	0,76	89,1	0,00019	4,9	4,8	2,1	143	-370-340 -550-340
71 N2/8	3,2	0,70	2100	1,45	92,5	0,00038	6,0	9,6	2,2	144	-750-340
71 N3/8	4,8	1,10	2100	2,14	93,6	0,00057	7,0	14,4	2,2	144	-111-340
80T1/4	5,0	1,10	2100	2,07	90,5	0,00110	8,0	14,4	2,5	154	-111-123 -111-323 -111-340
80T1/4 HM	3,41	0,75	2100	1,46	90,5	0,00110	7,8	14,4	2,3	154	-111-123 -111-323 -111-340
80T1/4 Δ	4,8	1,50	3000	3,44	90,4	0,00110	8,0	14,4	1,4	89	-151-340
90T1/4	6,8	1,50	2100	2,82	89,9	0,00190	10,0	21,0	2,4	156	-151-323 -151-340
90T1/4 Δ	7,0	2,20	3000	5,09	89,6	0,00190	10,0	21,0	1,4	90	-221-340
90T3/4	10,0	2,20	2100	4,13	90,5	0,00240	12,0	29,0	2,4	158	-221-323 -221-340
90T3/4 HM	5,0	1,10	2100	2,08	92,7	0,00240	11,6	28,3	2,4	156	-151-323 -151-340
90Τ3/4 Δ	9,5	3,00	3000	6,84	92,3	0,00240	12,0	29,0	1,4	91	-301-340
100T2/4	13,6	3,00	2100	5,40	91,4	0,00416	18,0	42,0	2,6	161	-301-323 -301-340
100T2/4 Δ	12,7	4,00	3000	8,90	92,1	0,00460	18,0	42,0	1,5	93	-401-340
100T5/4	18,2	4,00	2100	7,10	92,1	0,00600	21,0	57,0	2,6	165	-401-323 -401-340
100T5/4 HM	10,0	2,20	2100	4,16	91,0	0,00600	20,2	53,5	2,4	165	-301-323 -301-340
100T5/4 Δ	17,5	5,50	3000	11,9	92,2	0,00600	21,0	57,0	1,5	95	-551-340

Information

Puissance du moteur par rapport à la puissance du variateur.

L'affectation variateur → moteur s'effectue avant tout selon la puissance. En raison des courbes caractéristiques, dans certains cas, un variateur NORD de puissance plus importante doit être affecté au moteur.

L'affectation des variateurs est effectuée de manière globale pour les variateurs à distance (par ex. NORDAC *PRO* dans l'armoire électrique ou NORDAC *LINK*).

Les surcharges ou les applications dynamiques marche/arrêt peuvent exiger une affectation des variateurs avec une puissance plus élevée. Avec une affectation 1 moteur pour 1 variateur, un couple nominal doublé est possible. Le moteur lui-même peut théoriquement délivrer un couple nominal triplé (au démarrage et dans une plage de vitesse réduite).

Une surcharge durable d'un facteur 1,4 est possible partir de 10 Hz (Cela ne s'applique toutefois pas aux moteurs PMSM non ventilés).

Modes de fonctionnement

Comparé aux moteurs asynchrones, le fonctionnement des moteurs synchrones présente les différences notables suivantes :

- Pas de fonctionnement sur secteur
 les moteurs synchrones NORD fonctionnent uniquement sur variateur
- Plage d'affaiblissement du champ :

les moteurs synchrones NORD ne peuvent pas fonctionner, ou de manière très limitée, dans la plage d'affaiblissement du champ. Lors de la rotation, les aimants permanents dans le rotor induisent une tension dans le stator qui s'oppose à la tension aux bornes. La tension induite est alors proportionnelle à la vitesse du moteur et réduit la tension aux bornes, conductrice d'électricité. Le couple moteur disponible s'en trouve diminué. En outre, il y a un risque, p. ex. lors de chutes de charges d'un dispositif de levage, que des tensions élevées induites par de hautes vitesses du moteur endommagent le variateur.

Fonctions du variateur certaines fonctions du variateur, comme par exemple, le freinage par injection de courant continu, ne sont pas disponibles.

Les types de régulation suivants sont pris en charge par le fonctionnement sur variateur.

- Fonctionnement VFC boucle ouverte
 - applications avec courbe caractéristique de charge linéaire ou quadratique
 - faible dynamique
 - couples maximaux très limités
- Fonctionnement CFC boucle ouverte
 - applications à couple de charge constant, linéaire ou quadratique
 - dynamique moyenne
 - couples maximaux limités
- fonctionnement CFC boucle fermée
 - tous les types d'applications y compris les dispositifs de levage
 - dynamique élevée
 - couple maximal indépendant de la vitesse

Le mode de fonctionnement suivant influence la performance de l'entraînement :

- Dynamique et temps d'accélération
- Couple maximal disponible selon la vitesse

Mise en service

- 1. Contrôler le choix du variateur en termes d'affectation au moteur.
- 2. Contrôler le choix du variateur en termes de mode de fonctionnement/codeur.
- 3. Contrôler la connexion du moteur en termes de courbe caractéristique et de tension secteur (du variateur).
- 4. Raccordement variateur et moteur comme indiqué.
- 5. Suivre les consignes de sécurité des modes d'emploi et règlements de travail.
- 6. Activer l'alimentation réseau
- 7. Le paramétrage du variateur peut s'effectuer avec :
 - SimpleBox,
 - ParameterBox (à partir de la version de microprogramme V4.6R1 ou en mode ControlBox)
 - NORDCON (à partir de la version 2.5 ou en mode ControlBox)
 - NORDAC ACCESS BT
- 8. Dans le P200, le moteur synchrone NORD correspondant peut être choisi dans la liste. Les données moteur sont ainsi correctement définies. Une mesure de la résistance du stator P220 = 1 est recommandée.
- 9. Sélectionner la régulation (P300) :

fonctionnement VFC boucle ouverte (pompes, ventilateur), P300 = 0

faible dynamique

- Du démarrage à la fréquence selon P247 (fréquence de commutation vfc PMSM), le courant est inscrit, qui diminue linéairement avec l'augmentation de la fréquence, pour forcer le rotor à suivre (valeur de réglage habituelle 25 % de la fréquence nominale) Le niveau du courant peut être influencé via P210 (boost statique) (→ faibles couples de démarrage = P210
- il n'y a aucun paramètre de régulation à définir, mais des données moteur précises sont nécessaires, en particulier RS, L et UEMK.
- pour un fonctionnement stable, un amortissement d'oscillation adéquat est nécessaire (P245) ; il augmente et abaisse respectivement la fréquence temporairement, lors des modifications dynamiques de la charge.
- au démarrage, le moteur peut se mouvoir brièvement dans l'autre direction.

fonctionnement CFC boucle ouverte P300 = 2

dynamique moyenne

- de 0 à 10 % de la vitesse synchrone, l'entraînement se fait en fonctionnement VFC boucle ouverte. Dans la plage d'hystérésis, le courant tombe à la valeur de P209 (en général 0), puis la vitesse est établie sur la base du courant et le comportement de fonctionnement est amélioré à l'aide du régulateur de vitesse.
- il est possible de définir des paramètres de régulation, mais des données moteur précises sont nécessaires, en particulier RS, L et UEMK.

fonctionnement CFC boucle fermée P300 = 1

dynamique élevée

- surveillance des erreurs de glissement nécessaire P337 + P338
- réglage nécessaire pour les régulateurs de courant et de vitesse

Systèmes de codeurs possibles

Codeur incrémental avec signal zéro (NORDAC FLEX, NORDAC LINK)

- Raccordement du signal zéro sur l'entrée numérique 1.
- ▶ Réglage P420[01] = 42/ 43 (voir le manuel correspondant).
- Procédure de détermination de la position de départ du rotor nécessaire, pour déterminer le fonctionnement jusqu'au premier passage sur le point zéro, voir ci-dessous. L'impulsion zéro corrige alors les tolérances d'erreur de la procédure de détermination du point zéro.
- ▶ Si le codeur incrémental n'est pas orienté ou qu'il est déréglé par un choc ou démontage au niveau du moteur, le signal zéro du codeur doit être orienté sur la position du rotor. Pour cela, un décalage est réglé dans P334. Cela ne s'applique pas aux PMSM IE5. Ici, le signal zéro est réglé en usine dans le codeur.
- La surveillance des erreurs de glissement (P327/P328) doit impérativement être activée.
- ▶ En fonction de la procédure de mesure incrémentale, il est conseillé de référencer l'entraînement plus souvent. En cas d'utilisation de P420[01] = 43, cela peut être réalisé par une réinitialisation de la tension, avec P420[01] = 42, il suffit de retirer la validation. Cela se produit automatiquement suite à un message d'erreur de glissement.

Codeur incrémental sans signal zéro

- ▶ Procédure de détermination de la position de départ du rotor nécessaire, voir ci-dessous ; la précision de mesure électrique atteint seulement env. +/- 3 − 10°, la performance s'en trouve quelque peu restreinte (rapport courant/couple défavorable).
- La surveillance des erreurs de glissement (P327/P328) doit impérativement être activée.
- En fonction de la procédure de mesure incrémentale, il est conseillé de référencer l'entraînement plus souvent. Cela peut être réalisé par la réinitialisation de la tension. Cela se produit automatiquement suite à un message d'erreur de glissement.

Codeurs combinés AG-IG, incrémentaux & absolus

- Les codeurs combinés AG-IG ne requièrent pas la détermination de la position de départ (en raison du signal absolu). Le codeur est ajusté par NORD avant la livraison du motoréducteur et ne requiert pas de détermination du décalage.
- La surveillance des erreurs de glissement (P327/P328) doit impérativement être activée.

Détermination de la position de départ du rotor

Avec les codeurs incrémentaux, la détermination de la position de départ du rotor est nécessaire à chaque mise en marche de la tension secteur ou après certaines erreurs du variateur.

- a. par la procédure de signal test (P330 = 1)
 - Détermination de la position du rotor par une mesure test (durée env. 1 seconde). Au moyen de P212, le courant utilisé pour la mesure peut être amplifié, afin d'obtenir un meilleur résultat dans des conditions défavorables.
- **b.** par la procédure d'encliquetage (P330 = 0, commande en tension)
 - La tension force le rotor sur la position zéro et oriente ainsi le moteur. Cette procédure n'est possible qu'avec des applications horizontales ou des entraînements sans couple, sans frein moteur (Attention: l'arbre tourne pendant la procédure).

Tenir compte des consignes dans les manuels correspondants.

Pour le réglage et l'optimisation des régulateurs, il est conseillé de suivre le document AG 0101.

Moteurs synchrones NORD IE5+

- ne sont pas ventilés en version standard
- Mode de refroidissement IC411 selon EN 60034-6

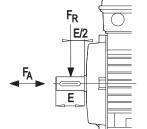
Vue d'ensemble des modes de refroidissement :

Désigna	tion	formulaire abrégé en anglais (NEMA)
IC410	Sans ventilateur	TENV
IC411	Auto-ventilé	TEFC
IC416	Ventilation forcée	TEBC

Niveau d'oscillation A selon DIN EN 60034-14

Les moteurs synchrones NORD sont exécutés selon le niveau d'oscillation A.

Entrées de câbles


Types	Dimensions
71	1 x M25 x 1,5 2 x M16 x 1,5

Efforts radiaux et axiaux autorisés pour les moteurs IEC / NEMA

Les valeurs indiquées s'appliquent à une durée de vie calculée des roulements de L_h = 20 000 heures en fonctionnement à 140 Hz avec un moteur à 8 pôles.

Efforts radiaux et axiaux admissibles

Types	F _R [N]	F _A [N]
71	530	480

Roulements et étanchéité de l'arbre

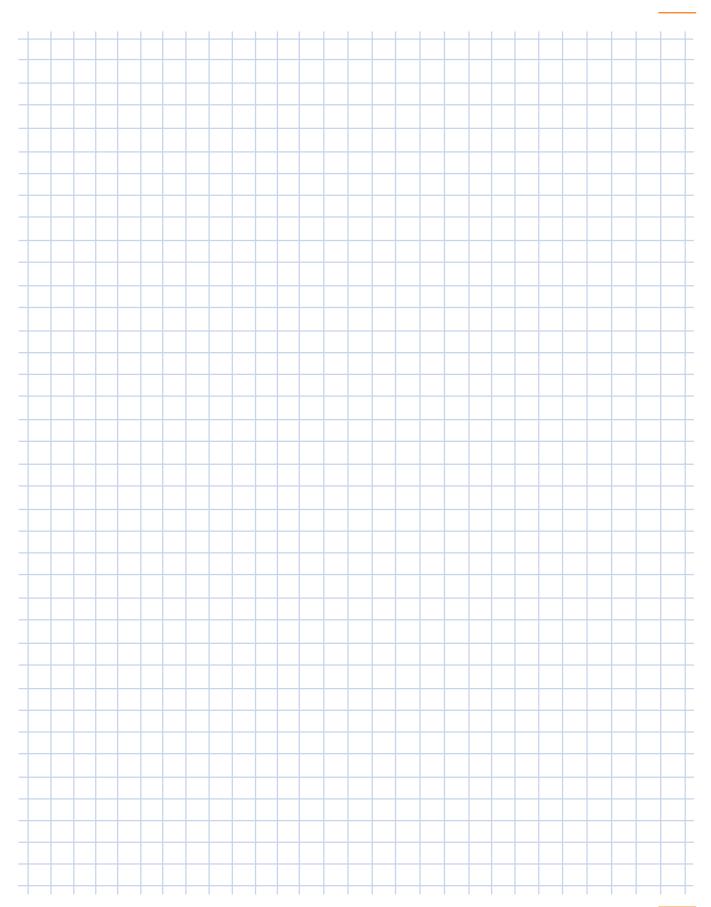
Les moteurs NORD sont équipés de paliers à roulement graissés pour toute leur durée de vie. Le palier du côté B sert de palier fixe.

Les côtés A et B sont équipés de bagues d'étanchéité d'arbre graissées, sans ressort.

Pour permettre le montage direct sur les réducteurs, des moteurs étanches à l'huile, équipés de différents modèles de brides, sont disponibles.

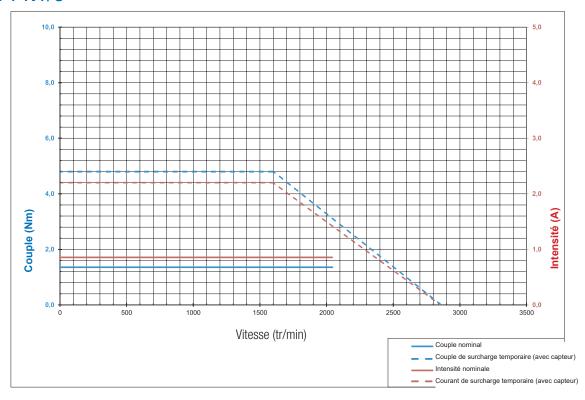
Pour plus d'informations sur le remplacement des roulements à rouleaux, consultez la notice de mise en service et d'entretien B1091.

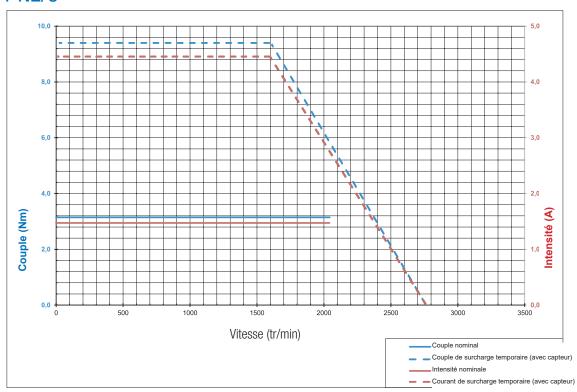
Types	Palier A	Palier B (palier fixe)						
71	6204.2Z	6204.2Z						


Degrés de protection selon DIN EN 60034-5

Protection contre les contacts accidentels de pièces en mouvement et sous tension, ainsi que la protection contre la pénétration de corps étrangers, de poussière et d'eau. Le degré de protection est indiqué par les lettres IP (International Protection) et deux chiffres. (par ex. IP55).

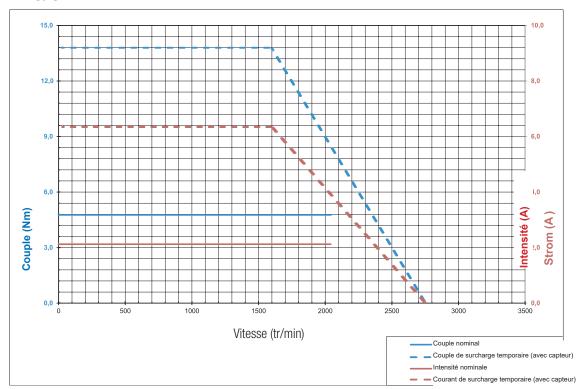
	Degré de protection									
Premier chiffre	Descriptif	Explication selon la norme IEC60034-5								
5	Protection contre le contact, les corps étrangers, la poussière	Protection intégrale contre le contact. La poussière ne peut pas entrer en quantité dommageable								
6	Protection contre le contact, les corps étrangers, la poussière	Protection intégrale contre le contact. La poussière ne peut pas pénétrer.								
Deuxième chiffre	Descriptif	Explication								
5	Protection contre l'eau	Protection contre les projections d'eau venant de toutes les directions. L'eau ne peut pas entrer en quantité dommageable.								
6	Protection contre l'eau	Protection contre la mer agitée et les fortes projections d'eau venant de toutes directions. L'eau ne peut pas entrer en quantité dommageable.								
9	Protection contre l'eau	Protection contre l'eau lors des nettoyages à haute pression / à jet de vapeur								




NORD IE5 DONNÉES MOTEUR 71 N1/8 71 N2/8

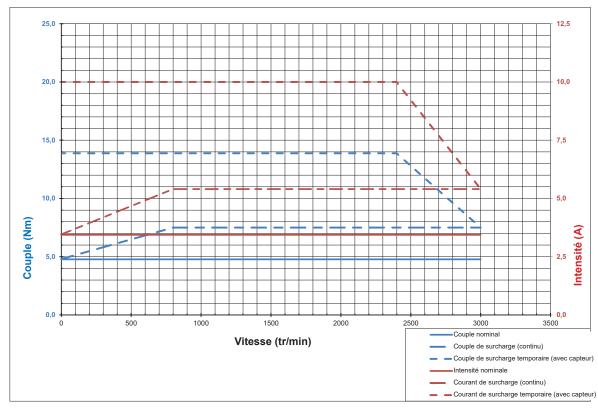
71 N1/8

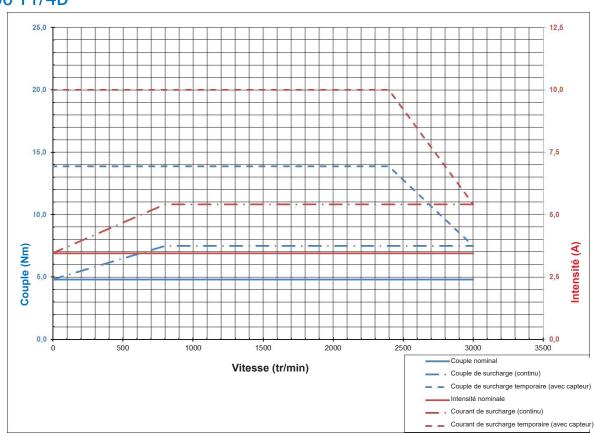
71 N2/8



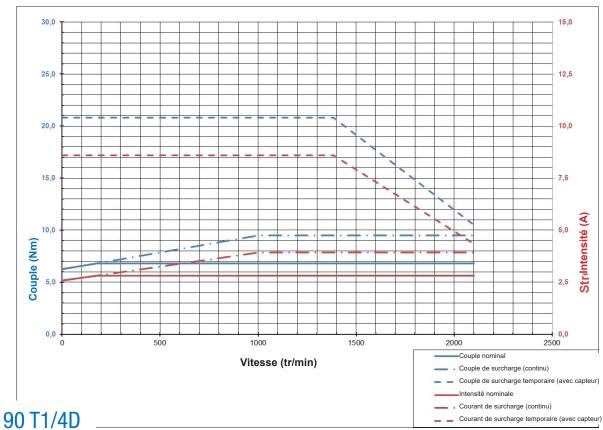
71 N3/8

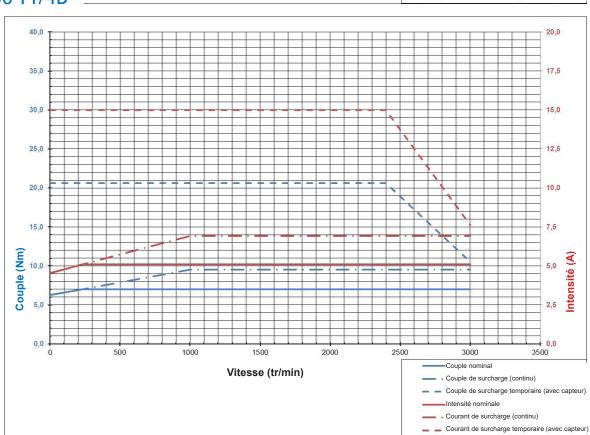
NORD IE5 DONNÉES MOTEUR


71 N3/8


NORD IE4 DONNÉES MOTEUR 80 T1/4 80 T1/4D

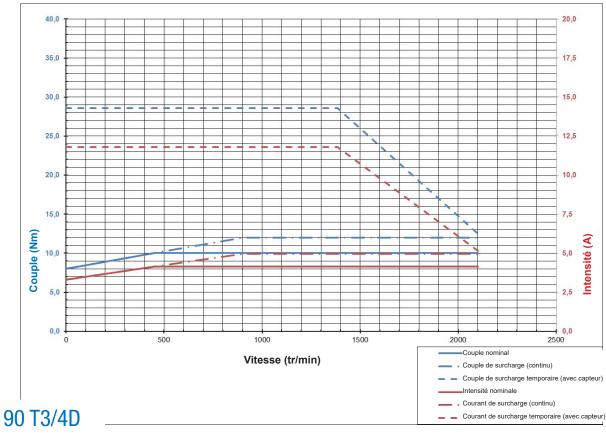
80 T1/4 autoventilé

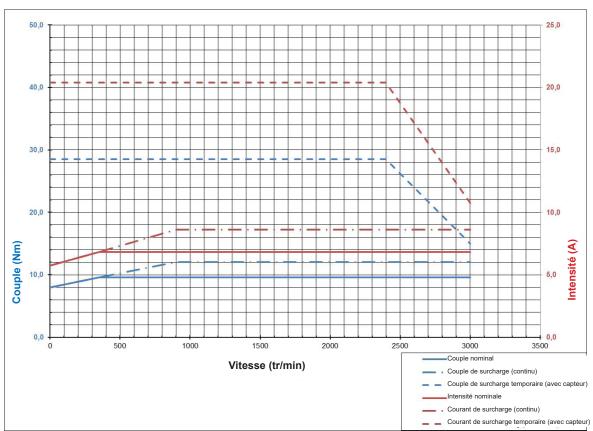

80 T1/4D



NORD IE4 90 T1/4 90 T1/4D DONNÉES MOTEUR

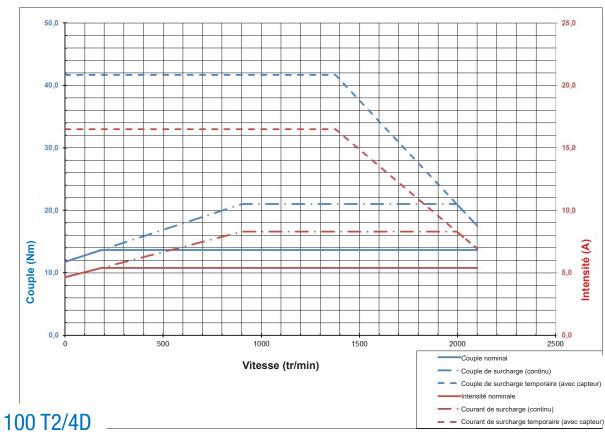
90 T1/4

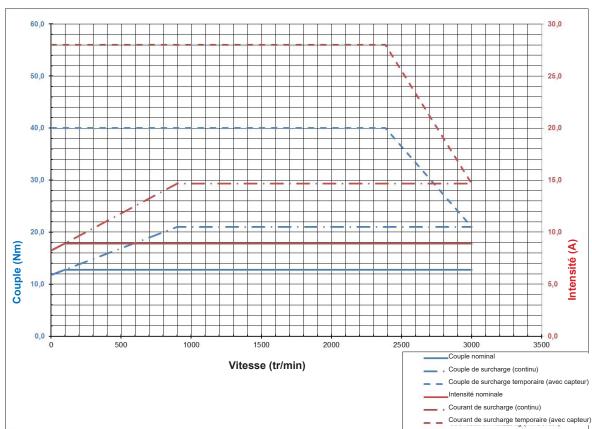



NORD IE4 DONNÉES MOTEUR

90 T3/4 90 T3/4D

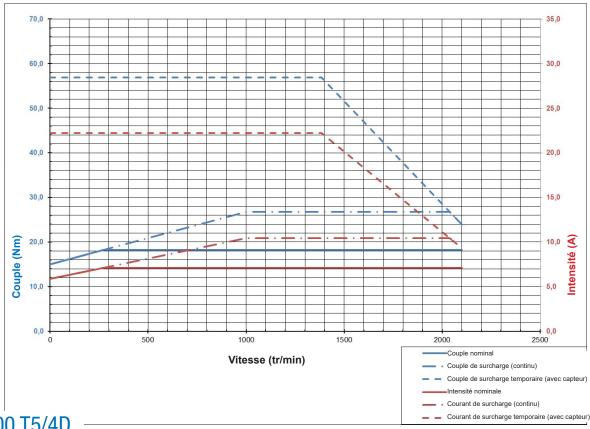
90 T3/4

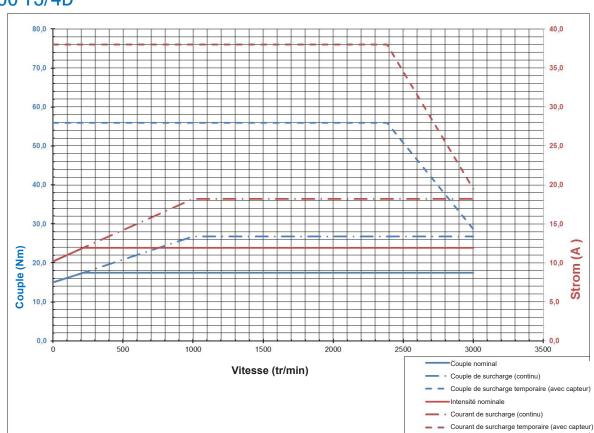



100 T2/4 100 T2/4D

NORD IE4 DONNÉES MOTEUR

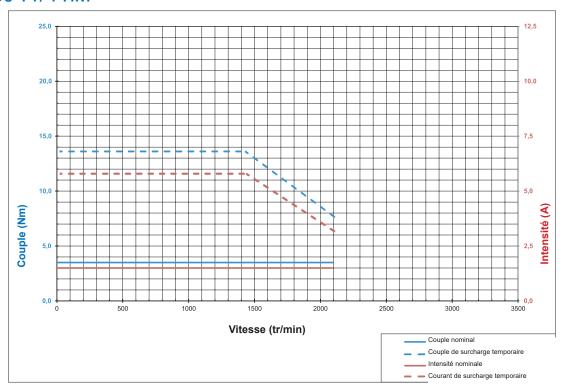
100 T2/4

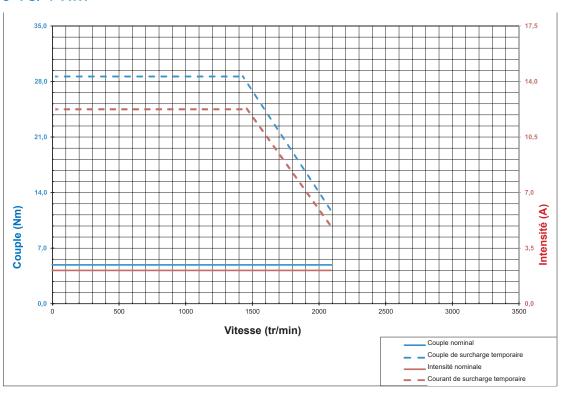



NORD IE4 DONNÉES MOTEUR 100 T5/4 100 T5/4D

100 T5/4

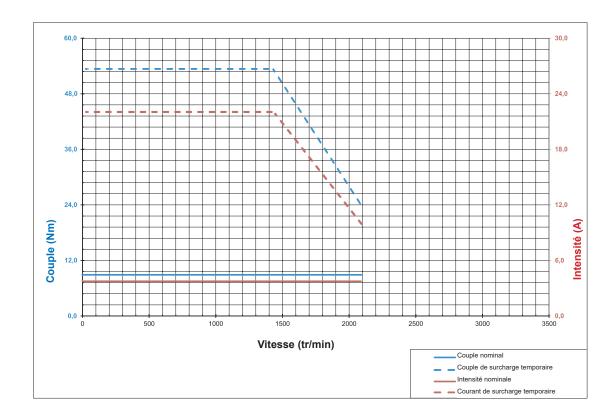
100 T5/4D



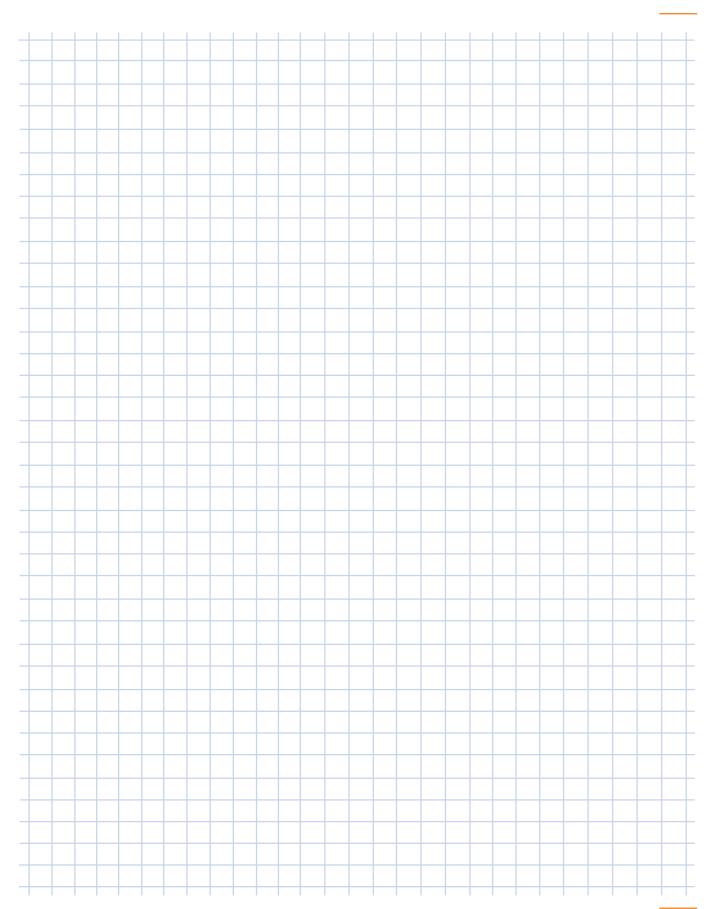

80 T1/4 HM 90 T3/4 HM

NORD IE4 HM **DONNÉES MOTEUR**

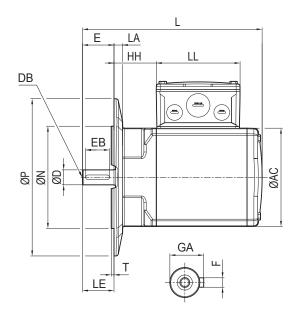
80 T1/4 HM

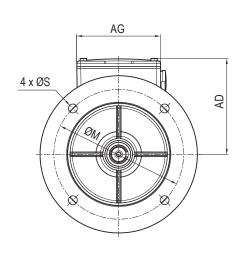

90 T3/4 HM

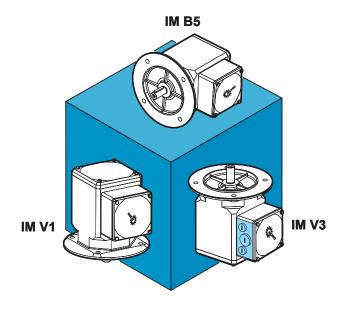
NORD IE4 HM DONNÉES MOTEUR 100 T5/4 HM



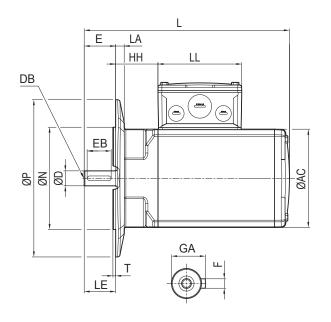
100 T5/4 HM

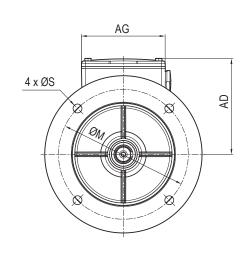


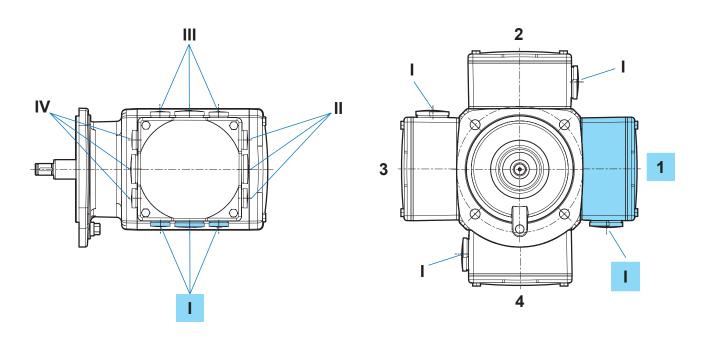

NORD IE5 B5



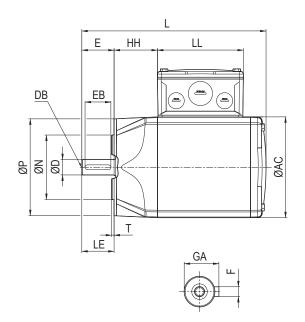
71Nx/8

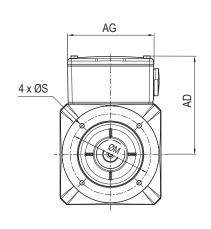

Туре																			
	LA	M	N	Р	S	Т	AC	AD	AG	НН	Gauche	LE	LL	D	DB	Е	EB	F	GA
71Nx/8	11	165	130	200	11	4,0	125	121	105	55	228	40	105	19	M6	40	32	6	21,5



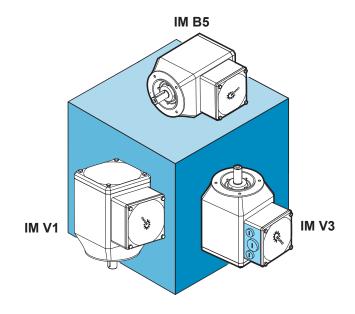


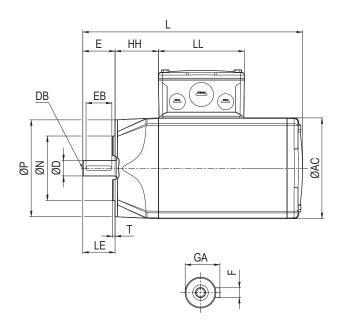
NORD IE5 B5 BRE

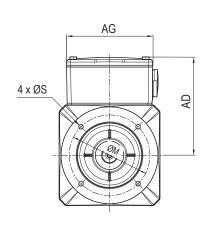

Type									(
Турс	LA	LA M N P S T					AC	AD	AG	НН	Gauche	LE	LL	D	DB	E	EB	F	GA
71Nx/8	11	165	130	200	11	4,0	125	121	105	55	274	40	105	19	M6	40	32	6	21,5

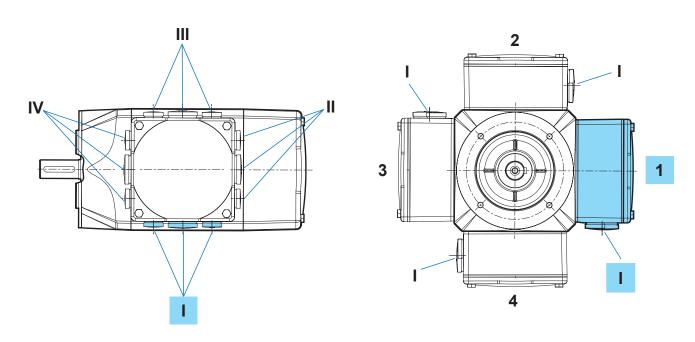


NORD IE5 B14

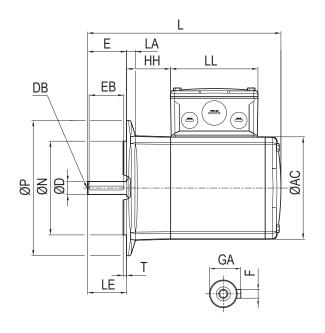


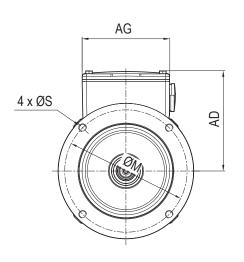

Type]									6								
	М	N	Р	S	Т	AC	AD	AG	НН	Gauche	LE	LL	D	DB	Е	EB	F	GA
71Nx/8	100	80	120	M6x15	3,0	125	121	105	55	228	40	105	19	M6	40	32	6	21,5



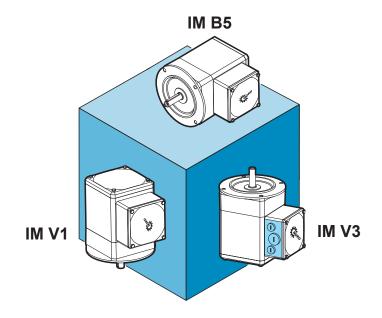


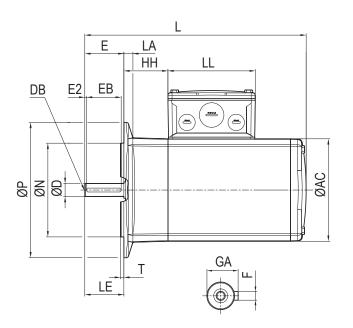
NORD IE5 B14 BRE

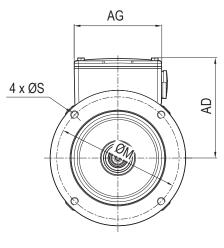

Туре								(a d			
	М	N	Р	S	Т	AC	AD	AG	НН	Gauche	LE	LL	D	DB	Е	EB	F	GA
71Nx/8	100	80	120	M6x15	3,0	125	121	105	55	274	40	105	19	M6	40	32	6	21,5

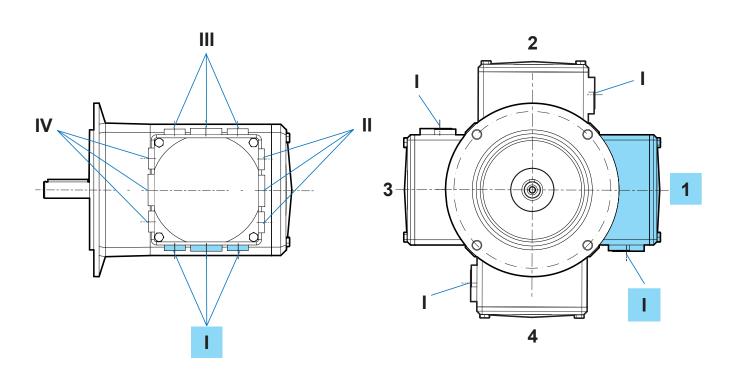


NORD IE5 NEMA

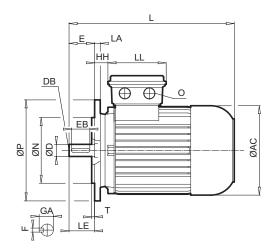


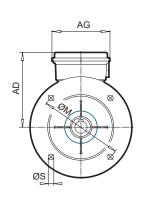

Type											To the second									
	LA	M	N	Р	S	Т	AC	AD	AG	НН	Gauche	LE	LL	D	DB	Е	E2	EB	F	GA
71Nx/8	11	149,2	114,3	165	M6x15	4,0	125	121	105	55	236	47,6	105	15,87	M6	47,6	1,5	42,9	4,76	17,9

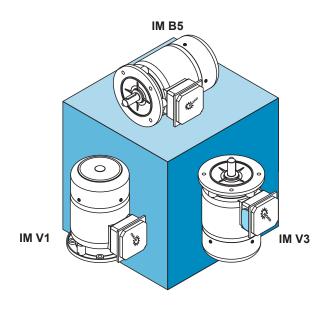




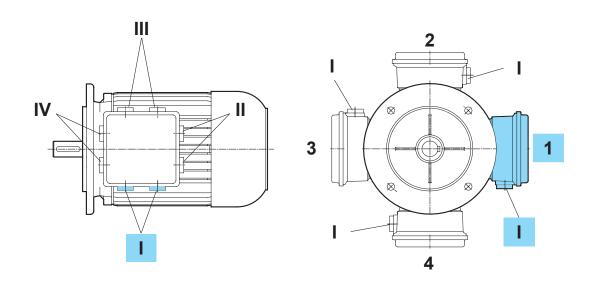
NORD IE5 NEMA BRE



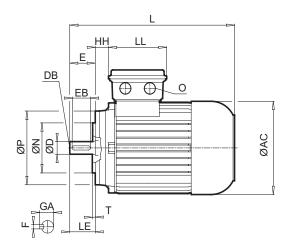

Туре									(C)								£)			
	LA	M	N	Р	S	Т	AC	AD	AG	НН	Gauche	LE	LL	D	DB	Е	E2	EB	F	GA
71Nx/8	11	149,2	114,3	165	M6x15	4,0	125	121	105	55	281	47,6	105	15,87	M6	47,6	1,5	42,9	4,76	17,9

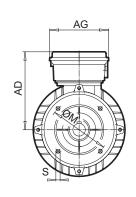


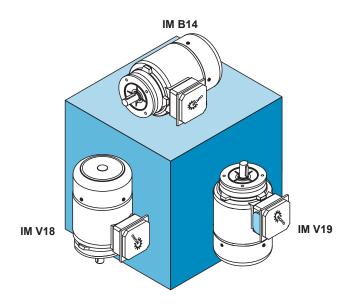
Type											ı			
	LA	M	N	Р	S	Т	AC	AD	AG	НН	Gauche	LC	LE	LL
80	11	165	130	200	11	3,5	156	142	114	22	276	309	40	114
90	11	165	130	200	11	3,5	176	147	114	26	326	373	50	114
100	15	215	180	250	13,5	4,0	194	169	114	32	366	422	60	114

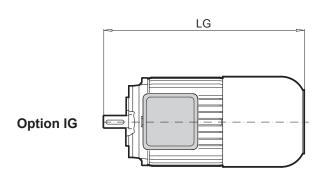


NORD IE4 B5

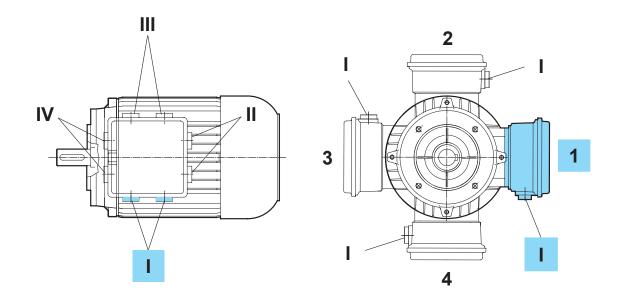



LG	0	D	DB	Е	EB	F	GA	DA	DC	EA	EC	FA	GC
337	M25 x 1,5	19	M6	40	32	6	21,5	14	M5	30	20	5	16,0
398	M25 x 1,5	24	M8	50	40	8	27,0	19	M6	40	32	6	21,5
456	M32 x 1,5	28	M10	60	50	8	31,0	24	M8	50	40	8	27,0





Туре													
	М	N	Р	S	Т	AC	AD	AG	НН	Gauche	LC	LE	LL
80	100	80	120	M6 x 12	3,0	156	142	114	22	276	309	40	114
90	115	95	140	M8 x 15	3,0	176	147	114	26	326	373	50	114
100	130	110	160	M8 x 16	3,5	194	169	114	32	366	422	60	114



	LG	0	D	DB	Е	EB	F	GA	DA	DC	EA	EC	FA	GC
_	337	M25 x 1,5	19	M6	40	32	6	21,5	14	M5	30	20	5	16,0
	398	M25 x 1,5	24	M8	50	40	8	27,0	19	M6	40	32	6	21,5
	456	M32 x 1,5	28	M10	60	50	8	31,0	24	M8	50	40	8	27,0

NOTES

Extraits du programme NORD

G1000 Vitesses constantes Carters MONOBLOC 50 / 60 Hz

- ▶ Motoréducteurs à engrenages cylindriques NORDBLOC.1®
- Motoréducteurs à engrenages cylindriques
- Motoréducteurs à arbres parallèles
- Motoréducteurs à couples coniques
- Motoréducteurs à roue et vis

G4014 Motoréducteurs avec variateur électronique intégré

- ▶ Motoréducteurs à engrenages cylindriques NORDBLOC.1®
- Motoréducteurs à engrenages cylindriques
- Motoréducteurs à arbres parallèles
- Motoréducteurs à couples coniques
- Motoréducteurs à roue et vis

G1050 Réducteurs industriels MAXXDRIVE ® Carters MONOBLOC 50 / 60 Hz

- Réducteurs à arbres parallèles
- Réducteurs à couples coniques

G1035 Réducteurs à vis sans fin UNIVERSAL

▶ SI et SMI

F3018_E3000 Variateurs de fréquence SK180E F3020_E3000 Variateurs de fréquence SK200E F3060_E3000 NORDAC PR0 Variateurs de fréquence SK 500P

NORD Réducteurs - Bureaux commerciaux

95947 ROISSY CH DE GAULLE Cedex Tél.: + 33 (0)1 49 63 01 89 Fax : + 33 (01) 49 63 08 11 france@nord.com

FR

20, allée des Erables B.P. 59070